If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6c^2+24c=0
a = 6; b = 24; c = 0;
Δ = b2-4ac
Δ = 242-4·6·0
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-24}{2*6}=\frac{-48}{12} =-4 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+24}{2*6}=\frac{0}{12} =0 $
| 3^(2x-8)-28(3^(x-4))+27=0 | | 1=-3x/2 | | 1=-3x/6 | | 9b^2-18b=0 | | w=90÷9 | | 1/2x^2-x=12 | | 9(5x+90)=99(56x+999) | | 8a^2+16a=0 | | 8b^2+48b=0 | | -5x^2+1000x-30000=0 | | (3x+8x+15)=180 | | 16÷4+1=x | | 16÷4+1=e | | 5w2+8=58 | | 57+x+59=180 | | 9z^2-72z=0 | | 3x/4=2x-1 | | 7z^2+49z=0 | | 12(2x-9)=3(8x+5) | | 4(x+6)=x-3/2 | | 49-f=22+7 | | 11/4y-11/20y-7/15=14/3 | | 1/3x+2/5=2 | | 2x-10+40=90 | | 10(2a-3)=8+5(4+18a) | | (X+5)-x=42 | | 5x+12=16+2x-5 | | 8-2=3x | | 3x-33=6x | | 3(6x-9)=-5 | | 2(x+6)=x-3/2 | | 21-(-3)+6(3+5y)=17+(-4)-3(7-y) |